Metabolic and transcriptional transitions in barley glumes reveal a role as transitory resource buffers during endosperm filling
نویسندگان
چکیده
During grain filling in barley (Hordeum vulgare L. cv. Barke) reserves are remobilized from vegetative organs. Glumes represent the vegetative tissues closest to grains, senesce late, and are involved in the conversion of assimilates. To analyse glume development and metabolism related to grain filling, parallel transcript and metabolite profiling in glumes and endosperm were performed, showing that glume metabolism and development adjusts to changing grain demands, reflected by specific signatures of metabolite and transcript abundances. Before high endosperm sink strength is established by storage product accumulation, glumes form early, intermediary sink organs, shifting then to remobilizing and exporting source organs. Metabolic and transcriptional transitions occur at two phases: first, at the onset of endosperm filling, as a consequence of endosperm sink activity and assimilate depletion in endosperm and vascular tissues; second, at late grain filling, by developmental ageing and senescence. Regulation of and transition between phases are probably governed by specific NAC and WRKY transcription factors, and both abscisic and jasmonic acid, and are accompanied by changed expression of specific nitrogen transporters. Expression and metabolite profiling suggest glume-specific mechanisms of assimilate conversion and translocation. In summary, grain filling and endosperm sink strength coordinate phase changes in glumes via metabolic, hormonal, and transcriptional control. This study provides a comprehensive view of barley glume development and metabolism, and identifies candidate genes and associated pathways, potentially important for breeding improved grain traits.
منابع مشابه
Combined noninvasive imaging and modeling approaches reveal metabolic compartmentation in the barley endosperm.
The starchy endosperm of cereals is a priori taken as a metabolically uniform tissue. By applying a noninvasive assay based on (13)C/(1)H-magnetic resonance imaging (MRI) to barley (Hordeum vulgare) grains, we uncovered metabolic compartmentation in the endosperm. (13)C-Suc feeding during grain filling showed that the primary site of Ala synthesis was the central region of the endosperm, the pa...
متن کاملExpression analysis of abscisic acid (ABA) and metabolic signalling factors in developing endosperm and embryo of barley☆
The expression of genes encoding components of ABA and metabolic signalling pathways in developing barley endosperm and embryo was investigated. The genes included HvRCAR35_47387 and HvRCAR35_2538 (encoding ABA receptors), HvABI1d (protein phosphatase 2C), HvSnRK2.4, HvSnRK2.6 and HvPKABA1 (SnRK2-type protein kinases) and HvABI5 (ABA response element binding protein; AREBP), as well as two gene...
متن کاملExpression of cell wall invertase and several other genes of sugar metabolism in relation to seed development in sorghum (Sorghum bicolor).
We report expression profiles of several genes of carbohydrate metabolism, cell wall invertase (CWI) in particular, to better understand sugar transport and its utilization in developing caryopses of grain sorghum [Sorghum bicolor (L.) Moench]. Gene expression analyses for CWI using RNA gel blot and real-time quantitative PCR approaches on developing caryopses, including the glumes (maternal ti...
متن کاملFunctional and structural characterization of plastidic starch phosphorylase during barley endosperm development
The production of starch is essential for human nutrition and represents a major metabolic flux in the biosphere. The biosynthesis of starch in storage organs like barley endosperm operates via two main pathways using different substrates: starch synthases use ADP-glucose to produce amylose and amylopectin, the two major components of starch, whereas starch phosphorylase (Pho1) uses glucose-1-p...
متن کاملDevelopment of endosperm transfer cells in barley
Endosperm transfer cells (ETCs) are positioned at the intersection of maternal and filial tissues in seeds of cereals and represent a bottleneck for apoplasmic transport of assimilates into the endosperm. Endosperm cellularization starts at the maternal-filial boundary and generates the highly specialized ETCs. During differentiation barley ETCs develop characteristic flange-like wall ingrowths...
متن کامل